Surname:	Forename:	MatrNo.:
Duiname	TOTEIIame	Wating

Exam: Mathematics 2

Hamburg University of Applied Science
Faculty of Engineering & Computer Science, Department of Information and Electrical Engineering
Prof. Dr. Robert Heß, July 3rd 2018, duration: 90 Min.
Permitted aids: up to six A4-pages of personal notes (i.e. single sided sheets)

Result: of 100 points Mark: points.

Problem 1 (15 points)

Solve the following integral: $\int x^2 \sin(x) dx$

Problem 2 (10 points)

Evaluate the gradient of the following function: $f(x, y, z) = \sqrt{x^2 + y^2} + \sin(2z)$

Problem 3 (15 points)

Analyse the differential equation y'x = 1 by the following steps:

- a) Draw the slope field for y(x) on the interval $x, y \in [-2, 2]$
- b) Find the solution of y(x)
- c) Check your result for y(x) by inserting it into the DE

Problem 4 (30 points)

For the differential equation $y''' - 2y'' = 3(y' + x^2 - 1)$ find the general solution y(x).

Problem 5 (10 points)

You choose 6 out of 10 possible people for a volleyball team. How many options do you have?

Problem 6 (20 points)

The length of candles are specified with $100 \,\mathrm{mm}$ with a tolerance of $\pm 3 \,\mathrm{mm}$. For the actual produced candles you discover an average length of $99 \,\mathrm{mm}$ with a standard deviation of $2 \,\mathrm{mm}$. Assuming normal distribution what failure rate in percent do you expect?