Surname: MatrNo.:

Exam: Mathematics 1

Hamburg University of Applied Science

Faculty of Engineering & Computer Science, Department of Information and Electrical Engineering Prof. Dr. Robert Heß, July 3rd 2018, duration: 90 Min.

Permitted aids: up to six A4-pages of personal notes (i.e. single sided sheets)

Result: of 100 points Mark: points.

Problem 1 (16 points)

Prove by mathematical induction: $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$

Problem 2 (15 points)

Is the function $f: \mathbb{C} \to \mathbb{C}, z \mapsto \sum_{k=0}^{\infty} \frac{(100z)^k}{k!}$ convegent and if yes for which values of z?

Problem 3 (12 points)

Find all solutions for $z \in \mathbb{C}$ in Cartesian form and reduce as far as possible with $z^4 = -324$.

Problem 4 (12 points)

Resolve, i.e. differentiate the following expressions:

a)
$$\frac{\mathrm{d}}{\mathrm{d}y}\sin(xy+t)$$
 b) $\frac{\mathrm{d}^2}{\mathrm{d}t^2}\exp(\mathrm{j}(\omega t+\varphi_0))$ c) $\frac{\mathrm{d}}{\mathrm{d}x}\frac{\sin(3x)}{x^2+2x-1}$

Problem 5 (20 points)

Apply partial fraction decomposition on: $\frac{3x-10}{x^3-4x^2+6x-4}$

Problem 6 (25 points)
a) Evaluate the inverse of
$$A = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 1 & 3 & 3 & 2 \end{pmatrix}$$
.

b) Derive the determinant of A.