Surname: MatrNo.:

Exam: Mathematics 1

Hamburg University of Applied Science Faculty of Engineering & Computer Science, Department of Information and Electrical Engineering Prof. Dr. Robert Heß, 20.1.2014, duration: 90 min.

Result: of 100 points Mark: points.

Problem 1 (18 points)

Evaluate and plot the region of convergence of the power series: $f(z) = \sum_{k=0}^{\infty} \frac{(z-2j)^k}{5}, z \in \mathbb{C}$

Problem 2 (16 points)

Resolve, i.e. differentiate the following expressions:

a)
$$\frac{\mathrm{d}}{\mathrm{d}x}\sin(xy+z)$$
 b) $\frac{\mathrm{d}}{\mathrm{d}t}e^{\mathrm{j}(\omega t+\varphi_0)-\delta t}$ c) $\frac{\mathrm{d}}{\mathrm{d}x}\frac{x^3-2x+5}{x^2+2x-1}$ d) $\frac{\mathrm{d}^n}{\mathrm{d}y^n}\exp(xy-z)$

Problem 3 (15 points)

Find all solutions for $z \in \mathbb{C}$ with $z^3 = -8$.

Problem 4 (15 points)

For the kinetic energy $E_{\text{kin}} = \frac{1}{2}mv^2$ the mass m was measured with an accuracy of 0.5% and the velocity v with an accuracy of 1.5%. Evaluate the uncertainty of the kinetic energy.

Problem 5 (18 points)

$$x + 2y + z = 1$$
 $x + y + z = 1$ $3x + 2y + 2z = 2$ $2x + 2y + z = 1$

For the given system of linear equations evaluate the ranks of coefficient matrix and extended coefficient matrix and draw your conclusion on the solution behaviour.

Problem 6 (18 points)

For
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & -2 \\ 2 & 2 & 1 \end{pmatrix}$$
 find A^{-1} and $\det(A)$.

What is the volume of a parallelepiped spanned by the three column vectors of A?